Pros and Cons of Wall Mounted vs. Door Mounted Exit Alarms

When it comes to securing your facility, exit alarms play an important role in alerting staff when a restricted or emergency door is opened. These devices are commonly used in retail, healthcare, education, and other industries where security and safety are critical.

But when choosing an exit alarm, one common decision you’ll face is how to mount it: directly on the door or on the wall beside it. Each option has advantages and drawbacks, and the right choice depends on your application, environment, and priorities.

Door-Mounted Exit Alarms

Pros

  • Fast Installation – Quicker setup with fewer steps.
  • Minimal Space Requirement – Doesn’t use up wall space.
  • Simple Setup – Uses included magnet to detect openings.

Cons

  • Vulnerable to Impact – Can be bumped or knocked off during heavy use.
  • Weather Exposure – Swings outside with the door, exposing electronics.
  • Higher Wear – Absorbs the same abuse as the door.

Wall-Mounted Exit Alarms

Pros

  • Greater Protection – Electronics stay inside, away from weather and damage.
  • Clearer Sound – Fixed mounting makes the alarm more noticeable.
  • Longer Lifespan – Protected placement often means less maintenance.

Cons

  • Longer Install – Requires wiring an external magnetic switch.
  • Extra Setup Step – May need a quick jumper adjustment.
  • Uses Wall Space – Placement can be limited by building layout.

Which Mounting Option Is Right for You?

The decision often comes down to convenience vs. durability. If you need a quick install and want to avoid taking up wall space, a door-mounted alarm may be the right choice. On the other hand, if you’re concerned about long-term reliability, sound clarity, or exposure to harsh conditions, a wall-mounted alarm could be the better option.

Ultimately, both styles provide effective exit security. It’s all about finding the fit that works best for your facility’s layout and usage.

Energy Awareness Month: How Facilities Can Cut Costs Before Winter Hits

propped doors at a school

October is Energy Awareness Month, making it the perfect time for facility managers and building owners to focus on efficiency and savings. With colder weather just around the corner, facilities often see a spike in heating costs, utility bills, and energy waste. But with a few proactive steps – and the right building hardware – you can cut costs before winter hits, without sacrificing safety, security, or comfort.

1. Stop Wasted Energy at the Door

Doors are one of the most common sources of energy loss in a building. A single door left open, even briefly, allows conditioned air to escape and forces HVAC systems to work harder. Over time, this can translate into thousands of dollars in wasted energy.

  • Install door prop alarms to prevent staff from leaving doors open “just for a minute.”
  • Use exit alarms to discourage unauthorized use of emergency exits, which are often propped open for convenience.
  • Seal air gaps by ensuring weatherstripping, mullions, and thresholds are in good condition.

2. Use Automatic Door Operators Strategically

Automatic door operators don’t just improve accessibility—they can also help regulate airflow in high-traffic areas. By ensuring doors open only when needed and close securely every time, operators help maintain indoor temperatures more effectively than doors that are frequently left ajar.

3. Prevent Drafts with the Right Mullions and Frames

Even small gaps around double doors can create major drafts. By using mullions designed for a tighter seal, facilities can reduce the amount of air that slips through, lowering both heating and cooling costs. Stronger mullions also increase security, creating a win-win for efficiency and protection.

4. Maintain Equipment for Peak Efficiency

Regular maintenance of your hardware can extend product life and improve performance:

  • Test door operators to ensure smooth, reliable operation.
  • Inspect alarms and batteries before colder weather hits.
  • Check seals, hinges, and closers to prevent unnoticed energy leaks.

5. Educate Staff and Tenants

Even the best hardware won’t stop energy waste if people don’t use it properly. During Energy Awareness Month, consider:

  • Posting signage near high-traffic doors reminding staff to keep them closed.
  • Training employees on the cost impact of propped doors.
  • Sharing your facility’s energy goals to encourage participation.

The Bottom Line

Energy Awareness Month is more than just a reminder—it’s an opportunity to take action before winter drives costs higher. By combining smart building practices with the right hardware, facilities can reduce wasted energy, protect budgets, and create a safer, more comfortable environment for everyone inside.

6 Security Gate Applications

With more outdoor areas needing to be secured, businesses and property owners are looking for new options for exterior security hardware that can serve their needs. The challenge is finding the security hardware solution that can stand up to the weather and application conditions. There are many options available for weatherized security hardware to satisfy outdoor applications. Always remember to refer to the local life safety codes when securing any gate.

Garden Centers & Lumber Yards

Garden centers and lumber yards need to have many entry points to move materials into the sales area, but they need to funnel the consumer traffic out through only one or two exit points. Garden-center environments tend to be more damaging to the gate hardware due to the weather, the constant spraying of water and the presence of fertilizers for maintaining live inventory; and those gates require hardware that is designed to withstand the rigors of that environment. The gates in these areas require security hardware that is either alarmed or equipped with delayed egress, which can be stand-alone or connected to the greater building security system.

Courtyards

Courtyards are another area that very often needs to be secured. Courtyards have traditionally been places for social gathering and for getting some fresh air at the workplace. But now, we find that many courtyards need to be protected with secured gates to keep the general public from entering and, more importantly, to keep the people in the courtyard from leaving the area unattended. This is especially critical at memory care facilities, preschools and playgrounds. One problem with this is that the courtyard is often also used as an emergency exit route, and people must have free egress to get away from the building in case of a fire or emergency exit situation.

Courtyard gates must allow for the mounting of weatherized security hardware. Currently the most common security hardware used on courtyard gates includes delayed egress. The delayed-egress function keeps the gate locked for 15 or 30 seconds while a local alarm sounds, after which the gate opens to allow free egress. The length of the delay is specified by the local municipality’s life safety codes. These systems can be stand-alone or they can be tied into the facility’s security system.

Swimming Pools

Outdoor swimming pools are probably the most common place to find security hardware securing a gate. Swimming pools are sources of considerable liability for their owners; security hardware is an ideal way for them to secure the area outside of normal operating hours and to prevent access by people who are not authorized to use the facility. Since the gates are outdoors, they should be secured with weatherized security hardware, which will often include top and/or bottom vertical rods. It is also typically tied into a security access system and a facility’s security monitoring system, including cameras.

Stadiums

Athletic stadiums often use many secured open-air gates. This applies to stadiums that are used for outdoor sports, such as football, baseball, soccer, lacrosse and others. These gates are typically used for deliveries and as an additional free exit after the game is over. Like courtyards, these gates allow must free egress in case of an emergency, but they must also be secured from unauthorized access or exit. The weatherized security hardware attached to these gates typically includes top and/or bottom vertical rods and is usually tied into the greater facility’s security system.

Storage Facilities

Storage facilities are also often controlled by secured gates. These businesses typically have a drive-in gate secured by an access control system, as well as a pedestrian gate that has access-controlled entrance and security hardware for exiting. This type of application usually includes weatherized security hardware with top and/or bottom vertical rods and is tied into a security system that monitors the entire facility and often includes security cameras.

Rooftops

Rooftop bars sometimes utilize a secured fence. Occupants of the bar must be able to evacuate in case of an emergency, but, for many reasons, routine use of that exit isn’t desirable for the establishment owners. This situation is similar to a courtyard because of the need for an emergency exit path. The weatherized security hardware can include delayed egress that provides a local audible alarm, and it can be tied into the security system that monitors the building and triggers the camera system. It can also be a stand-alone system with a local alarm.

The 4-1-1 On Hinges

There are four basic types of standard hinges: full mortise, half mortise, full surface and half surface.

The Four Types of Hinges

An illustration showing how a full mortise hinge works with a door frame and door

The full mortise hinge is the most frequently used type of hinge today. It can be used on aluminum, hollow metal and wood doors and frames. It was formerly referred to as a “butt hinge” because the two leaves of the hinge are pressed together when the hinge is closed. It is used for medium to heavy weight doors that are subjected to low to high frequency use. When the door is closed, the barrel is the only part of the hinge that is visible.

An illustration showing how a half mortise hinge works with a door frame and door

The half mortise hinge is generally used on hollow metal doors with channel iron frames that experience medium to high frequency use.

An illustration showing how a full surface hinge works with a door frame and door

The full surface hinge is for medium weight tubular steel doors and kalamein wood doors with channel iron frames under medium to high frequency service

An illustration showing how a half surface hinge works with a door frame and door

The half surface hinge is for regular weight hollow metal or wood composite doors with hollow metal frames that see medium to high frequency use.

Special Hinges

There are also some special types of hinges sometimes used with emergency exit doors. One of these is the continuous hinge, also called a continuous geared hinge or a traditional piano hinge. This hinge distributes the weight of the door along the full height of the door frame, and allows smooth operation and longer life for the door opening. Continuous hinges are great options on all openings, but especially high-use doors. And adding full length continuous hinges to exterior doors means that an intruder must cut the hinge the entire length of the door, which, while possible, requires much more time and effort.

An illustration showing how a swing clear hinge works with a door frame and door, both open and closed

Another special type of hinge is the swing clear hinge. Swing clear hinges are generally used on ADA swing doors, since they are designed to swing completely clear of the frame when opened, which creates a wider opening for maximum access.

electric hinge

An electric hinge is a special type of hinge that allows electrical current to pass from a door frame to a door. This allows the use of electronic hardware on doors, such as electric locks, electrified exit devices, access control systems, or monitoring devices without use of visible wiring.

There are also specific hinges for security applications of emergency exit doors.

Choosing A Hinge

There are a few factors that should be considered when choosing which type of hinge should be used, including the weight of the door, the frequency of use and the environment. Obviously, the correct choice of hinge depends on the application.

Interior doors usually have two hinges, while heavier exterior doors usually have three.

Concealed hinges are used when the design mandates that the hinge not be visible. A knuckle hinge is the exact opposite of a concealed hinge, in that it is intended to be seen and admired.

High-use doors, such as employee entrances and main entrances, might require heavy weight, ball bearing hinges in a finish that can endure the weather and elements. Bearings offer the highest levels of durability and ease of operation.

Medium-use doors, such as trash removal or receiving doors, might require a medium weight, standard 5-knuckle hinge in a durable finish.

Light-duty doors, such as emergency exit doors, may require three or even four hinges.

To help ensure the door provides trouble free operation, the height, width and weight of the door should be considered when choosing the type of hinge and the number of hinges.

The Importance of Door Hardware Maintenance

Door hardware plays a vital role in the safety, security, and functionality of any building. Whether it’s a school, office, hospital, or retail space, well-maintained door hardware ensures smooth operation, enhances security, and prolongs the life of your investment. Despite its critical role, door hardware maintenance is often overlooked until something goes wrong. Regular upkeep can prevent costly repairs, mitigate safety risks, and maintain compliance with building codes and standards.

Why Door Hardware Maintenance Matters

  1. Safety and Security
    • Faulty door hardware can compromise a building’s security. A misaligned latch, broken closer, or malfunctioning lock can provide easy access to unauthorized individuals or delay egress during emergencies.
    • Regular maintenance ensures panic hardware, exit devices, and locks function correctly, keeping occupants safe.
  2. Compliance with Codes and Standards
    • Building codes require specific types of hardware to be installed and maintained in certain environments. For instance, fire-rated doors must close and latch properly to maintain their fire-resistance integrity.
    • ADA compliance also hinges on properly maintained hardware that allows for accessible entry and exit.
  3. Cost Savings
    • Addressing minor issues before they escalate can save money. Preventative maintenance is less expensive than emergency repairs or full hardware replacements.
    • Well-maintained hardware reduces wear and tear, extending the life of the components.
  4. Operational Efficiency
    • Doors that don’t operate correctly can slow down traffic flow, causing frustration for employees, customers, or visitors.
    • Smooth-functioning hardware minimizes disruptions in daily operations.

Common Door Hardware Maintenance Tasks

  1. Inspection
    • Regularly check for loose screws, worn hinges, and damaged components. Inspect locks, exit devices, closers, and handles for signs of wear or malfunction.
  2. Cleaning
    • Remove dirt, grease, and grime from hardware to prevent build-up that can impede performance. Use manufacturer-recommended cleaning agents to avoid damaging finishes.
  3. Lubrication
    • Lubricate moving parts such as hinges, locks, and latch mechanisms to ensure smooth operation. Avoid over-lubricating, which can attract dust and debris.
  4. Alignment
    • Ensure doors are properly aligned within their frames. Misalignment can strain hardware components, causing premature failure.
  5. Testing
    • Periodically test panic hardware, door closers, and locks to confirm they’re functioning as intended. Ensure fire doors close and latch automatically.

Tips for Effective Maintenance

  • Create a Schedule: Establish a regular maintenance routine tailored to your building’s usage and environment.
  • Document Inspections: Keep detailed records of maintenance activities, inspections, and repairs.
  • Train Staff: Educate maintenance teams on the correct procedures for maintaining door hardware.
  • Partner with Professionals: Work with experienced technicians or hardware manufacturers for comprehensive inspections and repairs.

Conclusion

Investing time and resources into regular door hardware maintenance is essential for ensuring the safety, security, and functionality of your building. By addressing minor issues proactively, you can save money, comply with regulations, and provide a seamless experience for all occupants. Don’t wait for problems to arise—make maintenance a priority and keep your doors operating at their best.

Understanding Power Transfers: A Guide to Wiring Electrified Doors

When it comes to electrified locks and exit devices, power transfers play a crucial role in ensuring seamless operation while maintaining security and aesthetics. Whether you’re planning new construction or retrofitting existing doors, selecting the right power transfer solution can make all the difference.

What Are Power Transfers?

Power transfers provide a means of running wires from the door frame to electrified door hardware such as locks, strikes, or exit devices. They come in various forms, each suited to specific applications and installation requirements.

Types of Power Transfers

  1. Surface-Mounted Power Transfers
    • Includes armored door cords or door loops.
    • Economical and easy to install on existing openings.
    • Ideal for field preparation in both retrofits and new construction.
    • Highly visible but durable, making them a practical choice for many applications.
  2. Concealed Power Transfers
    • Mortised into the door and frame for a clean, tamper-resistant installation.
    • Factory-prepared and approved for fire-rated openings.
    • Best for heavy-traffic environments or areas requiring higher security.
  3. Electric Hinges
    • Provide a concealed and vandal-resistant method of running wires.
    • Fit into standard 4-1/2″ or 5″ hinge preparations with minor modifications for wire clearance.
    • Recommended for the center hinge position for optimal performance.
  4. Wireless Power Transfers
    • Use radio frequency (RF) transmitters to wirelessly transfer energy across the door gap.
    • Eliminate the need for drilling or conduit installation, making them ideal for retrofits, especially with wood doors.
    • Capable of transferring power and signals, including latch bolt monitoring and request-to-exit (REX) signals.

When Are Conduits Needed?

  • For electrical locks and strikes, a conduit or raceway is often recommended to run wires from the hinge-side preparation to the lock or strike preparation.
  • With electrical panic devices, most connections are through the hinge-side mounting, and no conduit is typically required in the door.

Benefits of Power Transfers

  • Aesthetic Appeal: Concealed power transfers maintain a clean look by hiding wires.
  • Durability: Heavy-duty options are designed to withstand frequent use in high-traffic areas.
  • Security: Concealed solutions reduce the risk of tampering or vandalism.
  • Ease of Installation: Surface-mounted and wireless options simplify retrofitting and field preparation.

Key Considerations

  • Always consult your Authority Having Jurisdiction (AHJ) to ensure compliance with fire-rated opening requirements.
  • For high-security or heavy-traffic environments, prioritize concealed or heavy-duty power transfers to enhance durability and tamper resistance.
  • For retrofits, consider wireless options to save time and avoid invasive installations.

Conclusion

Power transfers are the unsung heroes of electrified door systems, ensuring reliable power delivery while maintaining security and aesthetics. By understanding the types and applications of power transfers, you can choose the right solution for your project, whether it’s a high-security facility, a retrofit, or a new construction.

For more information or assistance with selecting the ideal power transfer for your needs, feel free to reach out to our team.

The Basics of Break-In Prevention: Securing Your Facility

No facility is completely impervious to break-ins, but with the right security measures in place, you can make it much harder for burglars to succeed. The goal of break-in prevention is not to guarantee a completely secure building but to delay unauthorized entry long enough for law enforcement or security personnel to respond. Even if your building hasn’t experienced any recent security threats, regular evaluations and upgrades to its protective measures are essential.

Here’s a back-to-basics guide on how to fortify your facility’s entry points and deter potential break-ins.

1. Start with a Heavy-Duty Door

The foundation of a secure entry point starts with the door itself. Even the strongest locks and security features will be ineffective if the door is weak.

  • Material Matters: Choose a door made of thicker material—16-gauge steel doors and frames are significantly stronger and more resistant to break-ins than their 20-gauge counterparts.
  • Reinforcement: Your door should be reinforced to properly support security hardware like locks and bolts. Be sure to consult with a door security distributor or integrator to ensure compatibility and durability.

2. Use a Full-Length Hinge

In commercial settings, doors must swing outward to comply with egress codes, leaving the hinge knuckles exposed and vulnerable.

  • Why Full-Length Hinges?
    • Support: Full-length hinges provide better support for heavy-duty doors compared to standard discrete hinges.
    • Resistance to Tampering: Continuous hinges are much more difficult for potential intruders to manipulate or vandalize. Upgrading to a full-length hinge significantly boosts your door security.

3. Invest in High-Strength Locks

The lock is your first line of defense, so its strength should never be overlooked.

  • Pull Force Resistance: Choose locks that can withstand at least 10,000 pounds of pull force.
  • Deep Bolt Penetration: Ensure your locks have deep bolt penetration into the door frame for maximum security.
  • Floor Bolts: Adding a bolt that locks into the floor helps prevent burglars from prying the bottom of the door upward, a common tactic used in break-ins.

4. Install a Burglar Alarm

A robust alarm system can be a strong deterrent against intruders. Alarms alert authorities and make your facility a less attractive target. When paired with strong door hardware, alarms create a multi-layered security approach that is both proactive and responsive.

Layering Security for Maximum Effect

The most effective security comes from combining these elements:

  • Heavy-duty doors
  • Full-length hinges
  • High-strength locks
  • Alarm systems

Together, these components work to:

  • Delay or prevent unauthorized access
  • Deter intruders from targeting your facility

Conclusion

Break-in prevention is all about implementing strong, well-maintained hardware and a layered approach to security. Even small upgrades, like replacing standard hinges with full-length ones or adding a floor bolt, can greatly enhance the safety of your building.

If you’re ready to take the next step in securing your facility, contact our team for guidance on how to improve your security systems. Together, we can build a safer, more secure environment for your business.

Panic Exit Devices vs. Fire-Rated Exit Devices: What’s the Difference?

Exit devices play a crucial role in ensuring safety during emergencies, but not all are created equal. While panic exit devices and fire-rated exit devices may look similar, their purposes and applications differ significantly. Understanding these distinctions is key to selecting the right hardware for your building’s needs.

advantex 10 series rim device / request to exit device / latch bolt monitor

What Are Panic Exit Devices?

Panic exit devices, often called crash bars, push bars, or simply exit devices, are designed to allow quick and easy egress during emergencies. They operate by releasing a latch when pressure is applied to a horizontal bar or pad in the direction of exit travel.

Key Features:

  • Ease of Use: The device unlocks the door with minimal force (15 pounds or less).
  • Coverage: The push bar or pad must extend at least half the width of the door.
  • Application: Required by the International Building Code (IBC) for certain buildings, including:
    • Educational and assembly facilities.
    • High-hazard occupancies.
    • Electrical or battery rooms.
  • Relocking: While panic exit devices can re-latch when the door closes, re-latching is not mandatory.

Purpose:

Panic exit devices prioritize speed and simplicity, enabling occupants to exit safely during emergencies, such as a fire or other life-threatening situations.

fire rated exit control lock

What Are Fire-Rated Exit Devices?

Fire-rated exit devices serve a dual purpose: providing quick egress while also maintaining the integrity of a fire-rated door assembly. These devices are designed for doors that help compartmentalize a fire, slowing its spread and allowing more time for evacuation and emergency response.

Key Features:

  • Fire-Rated Doors: Used on doors within fire-rated walls, such as:
    • Stairwell doors.
    • Doors to common hallways.
    • Doors within separation walls.
  • Re-Latching: Fire-rated exit devices must re-latch automatically when the door closes, ensuring the door remains securely closed during a fire.
  • Industry Testing: These devices must pass rigorous testing to confirm they can secure the door during a fire.
  • Time Rating: Must bear a label indicating the fire rating, typically ranging from 20 minutes to 3 hours.
  • No Mechanical Dogging: Fire-rated devices cannot be mechanically dogged (held in the open position), though electric dogging is permitted.

Purpose:

Fire-rated exit devices are critical for life safety and property protection, ensuring that fire-rated doors perform as intended to contain fire and smoke.

Key Differences Between Panic and Fire-Rated Exit Devices

FeaturePanic Exit DevicesFire-Rated Exit Devices
Re-LatchingOptionalMandatory
Fire ResistanceNot requiredMust pass fire-resistance testing
Mechanical DoggingAllowedNot allowed (electric dogging permitted)
Fire-Rated DoorsNot requiredRequired
ApplicationsGeneral emergency exitsFire-rated door assemblies

Choosing the Right Device

When selecting exit hardware, consider the specific requirements of your building and its safety codes:

  • Use Panic Exit Devices for doors in educational facilities, assembly spaces, or high-hazard areas where quick egress is the primary concern.
  • Use Fire-Rated Exit Devices for doors within fire-rated walls, such as stairwells and hallway separation doors, where fire containment is crucial.

Keep in mind that all fire-rated exit devices are also panic exit devices, but not all panic devices meet fire-rating requirements.

Conclusion

Understanding the difference between panic exit devices and fire-rated exit devices ensures that your building is both safe and compliant. By selecting the right hardware for each door, you can protect occupants, preserve property, and meet building code requirements.

Understanding Automatic Operators and the “Knowing Act”

Automatic door operators play a vital role in providing accessible, convenient, and secure building entrances. Whether you’re retrofitting an existing door or planning for a new installation, understanding the differences between operator types and the importance of the “Knowing Act” is essential for compliance and safety.

Types of Automatic Operators

ada swing door thumbnail

Automatic operators generally fall into two categories:

  1. Low-Energy Operators
    • Purpose: Ideal for mixed-use doors that some users open manually while others activate automatically.
    • Standard: Governed by ANSI 156.19, which limits the speed and force of operation to ensure safety.
    • Activation: Requires a Knowing Act, where users consciously trigger the door using push buttons, touchless switches, card readers, or similar devices.
    • Applications: Common in schools, libraries, hospitals, and entrances designed for ADA compliance.
  2. Full-Energy Operators
    • Purpose: Designed for high-traffic areas where doors open and close quickly.
    • Standard: Governed by ANSI 156.10, which includes stricter safety measures like sensors and guard rails.
    • Activation: Triggered by motion sensors that detect movement near the door.
    • Applications: Grocery stores, retail outlets, and environments requiring rapid door movement.

The Knowing Act: Key to Low-Energy Operators

Low-energy operators must be activated by a “Knowing Act,” meaning the user makes a deliberate effort to trigger the door. This activation method not only complies with ADA standards but also limits potential risks by ensuring users are aware of the door’s operation.

4-1/2 inch square push plate for automatic operators

Common Knowing Act Devices:

  • Push Buttons: Available in various sizes and shapes, these can be mounted on walls, jambs, or bollards for easy accessibility.
  • Touchless Switches: Hands-free solutions that enhance hygiene and convenience.
  • Card Readers & Keypads: Ideal for secure facilities, providing both access control and activation.

Installation Guidelines for Knowing Act Devices

To ensure compliance with standards like ADA, ANSI 156.19, and ICC A117.1, follow these installation tips:

  • Mount the actuator within 1-12 feet of the door.
  • Position the device so users are not in the swing path of the door.
  • Ensure a clear floor space is available for wheelchair users, beyond the arc of the door swing.
  • Actuators must operate without requiring tight grasping, pinching, or twisting and should require a maximum force of 5 lbs.

Why Not Use Motion Sensors for Low-Energy Operators?

Adding motion sensors to a low-energy operator changes its classification to a full-energy opening under ANSI 156.10, which requires enhanced safety measures such as sensors and guard rails. These additions increase both the cost and complexity of the system, making Knowing Act devices a more practical solution for many applications.

Selecting the Right Operator for Your Needs

When choosing between low-energy and full-energy operators, consider the traffic flow, safety requirements, and compliance needs of your facility. For most ADA-compliant entrances, low-energy operators activated by a Knowing Act are sufficient, offering an accessible, cost-effective solution without compromising safety.

By understanding the nuances of automatic operators and their activation methods, you can ensure your building meets regulatory requirements while providing a seamless experience for users.

Understanding Windstorm-Rated Hardware: Protection Against Nature’s Fury

windstorm icon

When it comes to safeguarding buildings and their occupants from extreme weather events like hurricanes and tornadoes, windstorm-rated hardware plays a crucial role. These specialized components are designed to protect against high-velocity winds and dangerous debris while maintaining structural integrity and functionality. Let’s explore the key distinctions and requirements for hurricane-rated and tornado-rated hardware.

Hurricane-Rated Hardware: Built for Sustained Storms

Hurricanes are among the most devastating natural disasters, with an average of 12 forming in the Atlantic basin each year. While storm surges are often the deadliest aspect, windborne debris accounts for much of the structural damage.

Hurricane-rated hardware is specifically designed to:

  • Prevent Debris Penetration: Protect buildings from windborne projectiles while maintaining the integrity of doors and their components.
  • Withstand High Velocity Hurricane Zones (HVHZ): Tested to endure sustained wind pressure and extreme conditions over long periods.

Guidelines and Testing

Hurricane-rated hardware must comply with the Florida Building Code (FBC), which sets stringent standards. Many coastal states adopt the FBC for their hurricane door requirements. Hardware is subjected to rigorous third-party testing, including:

  • Static Pressure Testing: Ensures hardware can withstand sustained wind pressure.
  • Debris Impact Testing: Verifies resistance to high-velocity projectiles.
  • Cyclical Pressure Testing: Simulates the stress of repeated wind gusts.

To meet FBC standards, all components—doors, frames, hinges, and exit devices—must bear visible windstorm rating labels. Importantly, the FBC recognizes component listings, allowing substitutions of products with equivalent ratings.

Tornado-Rated Hardware: Protecting Lives in an Instant

Tornadoes, while shorter in duration, are among the most violent natural events, with wind speeds reaching up to 250 miles per hour. In the U.S. alone, an average of 1,000 tornadoes are reported annually, making tornado-rated hardware vital in vulnerable regions.

The primary purpose of tornado-rated hardware is to:

  • Protect Occupants: Prevent extreme pressure differentials and block projectile debris.
  • Withstand Extreme Winds: Maintain integrity under short bursts of intense force.

Guidelines and Testing

Tornado-rated hardware adheres to FEMA 361 and ICC 500 standards, which outline stringent safety measures for tornado shelters. These products undergo comprehensive testing by third-party laboratories, including:

  • Static Pressure Testing: Ensures durability against extreme pressure differentials.
  • Impact Testing: Confirms resilience to debris impacts at speeds up to 100 miles per hour.

Unlike hurricane-rated systems, tornado-rated hardware is tested and certified as an assembly. This means the door, frame, and hardware must be supplied and installed together as a single unit to maintain compliance.

Key Differences Between Hurricane- and Tornado-Rated Hardware

FeatureHurricane-Rated HardwareTornado-Rated Hardware
PurposeLong-term protection from sustained winds and debris.Short-term protection from extreme winds and debris.
StandardsFlorida Building Code (FBC).FEMA 361 and ICC 500.
TestingStatic pressure, debris impact, and cyclical pressure.Static pressure and 100 mph impact testing.
ApplicationCan use component listings.Must be installed as an assembly.
MaterialsVarious materials.Steel doors only for FEMA 361 compliance.

Choosing the Right Windstorm-Rated Hardware

When selecting windstorm-rated hardware, consider the specific risks in your region. Coastal areas prone to hurricanes may prioritize FBC-compliant systems, while tornado-prone regions should invest in FEMA-rated assemblies for maximum protection.

By understanding the differences between hurricane- and tornado-rated hardware, building owners and facility managers can make informed decisions to safeguard lives and property.

Have questions about windstorm-rated hardware? Contact us to learn more about protecting your building against extreme weather events.